

Transnational Call 2012

7-081/2013 M-ERA.NET project New doped boro-phosphate vitreous materials, as nano-powders and nano-structured thin films, with high optical and magnetic properties, for photonics MAGPHOGLAS

PRESENTATION BROCHURE

24.11.2016

Transnational Call 2012 7-081/2013 M-ERA.NET project New doped boro-phosphate vitreous materials, as nano-powders and nano-structured thin films, with high optical and magnetic properties, for photonics MAGPHOGLAS

Consortium me	mbers			
Organization	Activity	Contact Person	Country/	Applying
Organisation	type ¹	(Name & email)	Region	for funding
[Coordinator:]*				
National Institute for	DEC	Bogdan Alexandru Sava /	Romania/	UEEISCDI
Laser, Plasma and	KES	savabogdanalexandru@yahoo.com	Jud.Ilfov	UEFISCDI
Radiation Physics - CO				
[Partner 2:]*	SME	Dumitru Ulieru /	Romania/	UFFISCDI
Sitex 45 S.R.L P2	SIVIE	dumitru_ulieru@yahoo.com.hk	Bucharest	UEFISCDI
[Partner 3:]*				
New University of			Pegina	
Lisbon, Faculty of	ЧЕ	Pagina Montairo / rom@fot unl nt	Monteiro /	FCT
Science and		Regina Wonteno / Teni@Tet.um.pt	rem@fet unl pt	ICI
Technology-			rem@ret.um.pt	
I3N/CENIMAT - P3				

The general objectives of this project are:

i) The design and development of vitreous BPG nano-materials by the sol-gel method, coprecipitation and coacervate techniques; (ii) Nano-structured powders and thin layers obtained by RFMS deposition, from BPG, at lower temperatures; (iii) High field (G-TW) and very short pulse (fs) laser irradiation on nano-structured BPG coatings for the preparation of meta-materials; (iv) Complex vitreous materials with negative refractive index in bulk; (v) Design and development of nano-structured thin films using RFMS and PLD/Ag-thin films on nano-structured BPG surface with negative refractive index; (vi) Modeling of nano-structure in nano-structured BPG; (vii) Structural and morphological characterization of the obtained materials and correlation with desired properties; (viii) Design and manufacturing of new Faraday rotator/ ultrafast opto-magnetic switch prototype using these materials with functional surfaces.

The novelty of the project consists of: (i) eco-design of sol-gel nanotechnology to obtain doped BPG; (ii) development of methods for using wastes and subproducts; (iii) design and modeling of inter-dependence structure/properties with process parameters; (iv) RFMS deposition of thin films in doped boro-phosphate systems; (v) high field and very short pulse laser nanostructured BPG films; (vi) meta-boro-phosphate glass materials design and development; (vii) modeling and design of negative refractive index BPG doped films; (viii) design and manufacturing of new Faraday rotator/ ultrafast opto-magnetic switch prototype based on BPG.

¹ HE – Higher Education, RES – Research, IND – Industry, SME, OTH - Others

WP no.	Work Package Title	Main content (keyword)	Total effort (Person- months)	Work package leader	Participating Project Partners
1.	Design, modeling and development of sol-gel and co- precipitated boro-phosphate materials as powder and coatings: Thin nano-structured boro-phosphate glass films by sol-gel method using spin- coating method; Measurement of properties for nano-structured boro-phosphate glass powders and thin films. Correlation structure-properties	Sol-gel; Boro-phosphate glass thin coatings; Spin-coating; Nano-structured materials; Physico-chemical properties; Structure	24	СО	Р3
2.	RFMS deposition of nanostructured doped boro- phosphate glass thin films: Development of doped nano- structured boro-phosphate glass thin films by RFMS; Thermal, structural, magnetic and optical properties measurements for the obtained thin films	RadioFrequencyMagnetron-Sputtering;Nano-structuredthinfilms;Structure;Thermal, magnetic andoptical properties;	22	СО	Р3
3.	PLD at high field (G-TW) and very short pulse (fs)(PLD-G- TW-fs) of nano-structured boro- phosphate glass thin films with functional surfaces: Properties measurements for the obtained thin films	Pulsed Laser Deposition; High field and very short pulse; Boro-phosphate thin films; Functional surfaces; Properties	20	СО	Р3
4.	Modeling and design of meta- materials and negative refractive index nano-structured boro-phosphate glassy materials; Properties measurements for the obtained materials; dissemination	Meta-materials; Negative refraction index; Properties; Dissemination	18	Р3	СО
5.	Patent elaboration related to the preparation method of new powders and thin films from vitreous materials	Patent deposition	5	СО	P2, P3
6.	Functionality demonstration for the obtained powders and thin films	Demonstration of functionality	5	P2	CO, P3
7	DesignandprototypemanufacturingofFaradayrotator/ultrafastopto-magnetic	Design of Faraday rotator /ultrafast opto-magnetic switch prototype	30	P2	CO, P3

switch based on BPG	Modeling and simulation	
	of opto-magnetic parts.	
	Manufacturing of	
	Faraday rotator /ultrafast	
	opto-magnetic switch	
	prototype	

Bulk glasses, powders and thin films were obtained by melting-quenching with wet raw materials preparation, sol-gel, magnetron sputtering - MS and pulsed laser deposition - PLD methods from Bi-Pb and Dy-Tb oxides co-doped boro-phosphate systems. The influence of precursors, pH, temperature, time, on the sol-gel process, and also the MS and PLD process parameters influence on films properties were investigated. The structure and properties of the obtained samples were analyzed by using Raman, FTIR and UV-Vis spectroscopy, thermal analysis and mechanical behavior at nano- and micro - scale under concentrated load action. The structure - properties correlation was studied by using XRD, XRF, SEM-EDS, and AFM measurements. The magneto- optical properties were analyzed using a modified Kerr device.

I. Laboratory methods, vitreous materials obtaining and materials characterization - INFLPR

Bulk glasses obtaining and characterization

The vitreous matrix comprises network formers meaning phosphorus and boron oxide, together with modifiers and stabilizers like Li_2O and ZnO. For the opto-electronic and magnetic properties PbO, Bi_2O_3 , CoO, Dy and Tb dopants were added – Table 1. The boro - phosphate glasses containing dopants in 1-3 molar % amount were prepared using p.a. reagents by melting in electric furnace at 1200-1250 °C for 2-4 hours.

Proba	Oxid	B_2O_3	P_2O_5	Li ₂ O	Al ₂ O ₃	ZnO	Dy ₂ O ₃	Tb ₂ O ₃	Bi ₂ O ₃	PbO	CoO	Total
BPM1	% molar	35	35	10	9	5	0	0	3	3	0	100
	% gravimetric	21.96	44.77	2.69	8.27	3.67	0	0	12.60	6.03	0	100
BPM2	% molar	20	50	10	9	5	0	0	3	3	0	100
	% gravimetric	11.43	58.27	2.45	7.53	3.34	0	0	11.48	5.50	0	100
BPM3	% molar	20.62	51.55	10.31	9.28	5.15	0	0	0	0	3.09	100
	% gravimetric	13.47	68.65	2.89	8.88	3.94	0	0	0	0	2.17	100
BPM4	% molar	50	20	10	9	5	0	0	3	3	0	100
	% gravimetric	34.77	28.36	2.98	9.17	4.06	0	0	13.96	6.69	0	100
BPM5	% molar adus la 100	21.17	52.91	10.58	9.52	5.29	0	0	0	0	0.53	100
	% gravimetric	13.72	69.92	2.94	9.04	4.01	0	0	0	0	0.37	100
BPM6	% molar	20	50	10	9	5	3	3	0	0	0	100
	% gravimetric	11.29	57.56	2.42	7.44	3.30	9.08	8.90	0	0	0	100
BPM7	% molar	19.42	48.54	9.71	8.74	4.85	4.37	4.37	0	0	0	100
	% gravimetric	10.36	52.82	2.22	6.83	3.03	12.49	12.25	0	0	0	100

Table 1. Oxidic composition (wt and mol. %) of studied glasses

The bulk materials obtaining method includes the following steps: Wet raw materials preparation

The technological process of preparing the mixture of raw materials by wet method, used in BPM glass obtaining comprises next operations: Gravimetric and volumetric dosing of the raw materials; Introduction in predetermined order of raw materials in the homogenization vessel; Cold homogenization of raw materials, mechanically for 15 minutes; Partial drying of the mixture of raw materials, with partial elimination of water (in quartz crucibles with electrical mixing, with flexible

shaft, on the electric stove) under constant stirring rate, until the temperature of 120-150oC is reached; Pouring the mixture while it is still fluid, into the melting high alumina crucible.

The melting of glass

The crucible with the mixture of raw materials was introduced into electrical furnaces equiped with SiC rods and with MoSi₂ elements, for the implementation of the program of themelting-forming-conditioning-refining-cooling of the rare-earth-doped phosphate glasses (Fig. 1a).

The rotation speed of the stirrer was set-up between 100-500 rpm, in dependency on melt viscosity, that in its turn depends on temperature. The first experiments were effectuated out without stirring, and then with continous stirring of the melt.

The annealing of the glass samples was made in an oven equipped with kanthal heating wires as presented in Fig 1 b)

The characteristic temperatures and thermal expansion coefficients obtained with the differential dilatometer are presented in Table 2.

Glass	Thermal expansion coefficient $(\alpha_{20}^{300} x 10^{-7}/K)$	Straining point (°C)	Vitreous transition temperature (°C)	Annealing temperature (°C)	Softening dilatometric temperature (°C)
BPM2	8.12x10 ⁻⁶	413	466.6	483.5	511
BPM3	8.63x10 ⁻⁶	433	498.5	517	541.3

Table 2. Thermal expansion coefficients and characteristic temperatures of BPM glasses

The optical transmission and structure of obtained materials was investigated by using UV-Vis-NIR, FTIR and Raman spectroscopy – Fig. 2 for BPM2 glass. The vitreous network is specific to metaphosphates, as proved by symmetric and asymmetric stretching vibrations of P-O-P bonds in Q2 and Q1 units, at 770 and 870-890 cm-1 and of PO_3^{2-} Q1 units, at 1030 and 1220 cm⁻¹ respectively. Vibration of -O-BO₄-O₃B links can be identified at 770 cm⁻¹ and asymmetric vibration links of O₃B-O-B-O in triangular borate units (BO₃ and BO₂O⁻) from pyro and ortoborate groups at 1030 cm⁻¹

Fig. 2c). Spectrul Raman pentru proba BPM6

Mechanical properties investigation by means of indentation method

The typical nanoindentation curves showing the load-penetration (P-h) dependences for each of the four used loads (20, 100, 500, 900 mN) are presented in Fig. 3 (a). The aspect of obtained imprints visualized in optical microscope is shown in Fig. 3 (b).

a)

Fig. 3. Curves 'loading and unloading' (P(h)) obtained at different maximum loads for glass sample BPM2, the graph included shows an enlarged image of the curve P(h) for P = 20 mN (a) and the aspect for fingerprints for P_{max}=100, 500 și 900 mN (b)

Fig. 4 presents the dependencies of hardness (H) and Young's modulus (E) to the load value. For each of the loads were performed 5 tests (indentations) and the values of H and E were calculated as averages of these measurements.

Fig. 4. The dependence of hardness (H) (a) and Young's modulus (E) (b) upon the value of the load for the BPM2 glass sample

To measure the coefficient of cracking resistance at indentation (K_{IC}) they were submitted and measured at least every five imprints, and the result is the average of these five measurements. Results of the measurements of K_{IC} are shown in Fig. 5.

Fig. 5. The cracking resistance for sample BPM2

Generally it can be concluded that the boro-phosphate glasses have improved mechanical properties compared to the alumino-phosphate (SAP) ones. The NI and MI results showed that the doped BPM glass with a higher hardness (H) have also a higher cracking resistance (K_{IC}) higher as

compared with SAP, which is an important feature for oxide glasses, usually characterized by an increased brittleness for the materials with a higher hardness.

Thin films from BPM glass targets deposited by Magnetron sputtering

Thin films from doped boro-phosphate glasses were obtained by magnetron sputtering deposition on different substrates, borosilicate and boro-phosphate glass, silicon, and quartz. We used a VARIAN ER3119 installation with the evaporation rate of 0.1 Å/s \div 10 Å/s and accurateness to control the thin film thickness of \pm 1 nm.

MS parameters for depositions from BPM2 target experiments were: Quartz constant: 8.25; Target density (BPM2MS): 2.752 g/cm3; Ar pressure 6.5x10 -4 torr; Active power 136 W; Reactive power 0 W; intensity 0.2 A; Substrate: borosilicate glass with Ag deposition of 16 nm on one face; Deposition speed 0.7-1.1 Å/s; Deposition time: 2h 46 min; Thickness of deposited film: 10220 Å.

Fig. 6. AFM for MS deposited films from BPM2 deposited on quartz

The target noted BPM 6 is made from a boro-phosphate glass co doped with Dy and Tb, obtained by melting - quenching technology. Several experiments for MS deposition of thin films were made on borosilicate glass - BS and on Si, with the working parameters presented in table 3 and AFM investigation in Fig. 7.

Experiment	1	2	3	4
Target	Ag, BPM6 /BPM6	BPM6	BPM6 +Ag	BPM6 +Ag
Quartz constant	8.83	8.83	8.83	8.83
Pressure Ar [torr]	6.5 x10 -4	4.6 x10 -4	4.6 x10 -4	5.4 x10 -4
Active power [W]	100-150/61	150	30/150/3/150	150/31/150/30
Reactive power [W]	0-2/4	2-3	2/0/1/0	3/0/3/0
Curent intensity [A]	0.2	0.2	0.2	0.2/0.1/0.2/0.1
Substrate	BS/Si	BS/Si	BS	Si
Deposition rate [Á/s]	1-1.3	1.2-1.8	3 and 0.3 Ag and 1.2-1.8 BPM6	1.2-1.5 BPM6 and 1.2- 1.3 Ag
Deposition time	1h 2 min/1h 17 min	1h 5 min	3h 55 min	2h 30 min.
Thickness of film [Å]	5400/5224	5000 over exp.1	1005Ag+5400BPM6+100 Ag+5400BPM6+100Ag	5352 BPM6 + 156 Ag + 5368 BPM6 + 104 Ag

Tabel 3. Deposition parameters for MS deposition from BPM6 target

It was identified that the films have the same composition as the glass target. Films with 0.5-1 microns thickness were obtained by magnetron sputtering deposition from boro-pohosphate glass target. The films were smooth as the AFM showed out.

Thin films from BPM glass targets deposited by Pulsed Laser Deposition

Parameter	1	2	3	4
Substrate	Quartz glass thick	Quartz glass thick	Quartz glass thin	Quartz glass thin
Deposition	BPM2 boro-	BPM2 boro-	BPM2 boro-	BPM2 boro-
	phosphate glass	phosphate glass	phosphate glass	phosphate glass
Temperature substrate at deposition	400°C	400°C	600°C	600°C
Pulses no	12500	25000	12500	25000
Fluence F	2.7 J/cm^2	2.7 J/cm^2	2.7 J/cm^2	2.7 J/cm^2
Distance target to substrate	8 cm	8 cm	8 cm	8 cm
Atmosphere	10 ⁻⁴ mbar O ₂	10^{-4} mbar O ₂	10 ⁻⁴ mbar O ₂	10 ⁻⁴ mbar O ₂

Table 4. PLD depositions from BPM2 targets

a) 400°C b) 600°C Fig. 8. AFM images of BPM2 thin film deposited by PLD on silica glass

AFM investigations – Fig. 7 showed that the substrate temperature influence the thickness of the PLD thin films of BPM2. Using the AFM, we measured how thick the thin film deposited by PLD was: at 400°C, the thickness is almost double as the one at 600°C.

The roughness is affected by the number of pulses. The roughness increases from 60 nm to 150 nm at 400°C, respectively from 20 nm to 50 nm at 600°C when the number of pulses increases from 12.500 to 25.000.

The magneto-optical Faraday effect

At wavelength of 600 nm, Verdet constant for BPM6 samples is about 0,06 min/mm/Oe, and a rotation of 5 min with a glass of 1 cm length is obtained in a field of 90-100 Oe. BPM6 sample depass 3 times the BMP2 sample.

M(H) plot and magnetization values from M(T) plot, indicate a magnetic susceptibility of 1,8*10-3 emu/g/Oe at 5 K and of 3,9*10-5 emu/g/Oe at T=300 K respectively (30 times the values for BMP3 cobalt sample). The behavior is tipically paramagnetic

Thin films deposited by sol-gel - spin coating technique

Table 5. Sof ger doped till fillis and powders composition									
Compound	B2O3	TEP	DyCl3 6H2O	TbCl3 6H2O	C2H5OH	NH4OH	HCl 1N	H2O	
Sample code	g	mL	g	g	mL	25% mL	mL	mL	pН
BPMG2d1	0.36	7.1	1.72	1.71	8.56	-	-	2.2	2
BPMG2d2	0.36	7.1	1.72	1.71	8.56	-	1	2.2	1.5
BPMG2d3	0.36	7.1	1.72	1.71	8.56	1	-	2.2	3
BPMG2d4	0.36	7.1	1.72	1.71	8.56	0.5	-	2.2	2.5

Table 5. Sol-gel doped thin films and powders composition

Magnetic properties of sol-gel films

The above results support a paramagnetic behavior up to the lower measuring temperature of 5 K, with a quite consistent magnetization of the 2d1 sample. In the case of 2d2 sample the magnetic susceptibility is four times higher comparatively to 2d1 sample, and the saturation magnetization is close to half of magnetite one.

II. Characterization of the obtained materials – CENIMAT -Portugal

A. Characterization of bulk glasses

i) Chemical composition (XRF); ii) Thermal characterization (DSC); iii) Structural characterization (XRD); iv) Microstructural characterization (SEM/EDS)

 Table 6. Chemical compositions

	BPM2 v	wt%	BPM3 wt%		
Compound	*nominal	XRF	*nominal	XRF	
Li ₂ O	2.45	2.45	2.89	2.89	
Al ₂ O ₃	7.53	8.77	8.88	10.3	
P_2O_5	58.27	58.7	68.70	66.5	
ZnO	3.34	2.92	3.93	2.14	
B_2O_3	11.43	11.4	13.48	13.4	
CoO			2.10	2.13	
SiO ₂		0.265		2.30	
Bi ₂ O ₃	11.48	5.03			
PbO	5.49	10.9			
K ₂ O				0.206	
CaO				0.0522	
Fe ₂ O ₃				0.0757	
NiO				0.0341	
TiO ₂				0.0245	

Compositions determined by XRF were close to the nominal composition. Unexpected presence of SiO_2 was detected (BPM2: 0.265 wt% SiO_2 and BPM3: 2.30 wt% SiO_2). Source of SiO_2 probably attributed to refractory from the furnace.

The glass density was determined by Arhimede method – Table 7.

Table 7. Densities of BPM glasses

	BPM2	BPM3	BPM5	BPM6
Density (g/cm3)	2.94	2.61	2.59	2.87

BPM2 has the highest density because Pb and Bi are heavier than the dopants Dy and Tb presented in BPM6. The lightest glasses are BPM3 and BPM5 doped with Co (3 and 0.5 mol%, respectively).

Thermal characterization of the glasses by DSC

Thermal behavior of the glasses showed that : Glasses are thermally stable up to 450 °C; Glass crystallization can be observed above 500 °C; BPM6 glass shows a comparatively lower tendency to crystallize than the other glass compositions

Fig. 13. DSC results at different heating rate

Structural characterization of the bulk glasses by XRD

Microstructural characterization of the bulk glasses by SEM

Fig. 15. SEM photos for BPM 2, 3, 5 and 6 glasses

EDS spectra of the glasses

Fig. 16. EDS of the BPM glasses

Microstructural characterization SEM-EDS: i) Bulk glass with more uniform microstructure is BPM6; ii) At very high magnification, heterogeneities are observed in BPM2, BPM3 and BPM5 bulk glasses; iii) EDS spectra showed elemental composition according to XRF results, the presence of SiO2 being confirmed in BPM5 glass.

B. Characterization of thin films

Table 8. Thin films deposited by PLD

Sample code	Observation
1	BPM2-8cm-400°C-10-4mbarO2-12500-cuart
2	BPM2-8cm-400°C-10-4mbarO2-25000-cuart
3	BPM2-8cm-600°C-10-4mbarO2-12500
4	BPM2-8cm-600°C-10-4mbarO2-25000
1A	BPM1-8cm-600°C-0.1mbarO2-12500
2A	BPM1-8cm-800°C-0.1mbarO2-25000
3A	BPM1-8cm-800°C-0.1mbarO2-12500

Structural characterization of the sol-gel films by XRD

Fig. 17. XRD patterns for PLD thin films

Indicate amorphous films, except for films 1 and 2, where a peak of aluminium phosphate, hexagonal- AlPO4, corresponding to the plane (012) is identified

Microstructural characterization of sol-gel films by SEM-EDS

Film 1 was more uniform than the others. Films 1A, 2A, 3A and 4A showed irregular surface and it was difficult to measure film thickness. EDS spectra showed the presence of some elements (ex. Si) that come from the substrate.

Code	Series	Thermal treatment	Substrate	Obs.	Technique			
BPM6 2d1	I1	600°C	BS	pH =1	sol-gel			
BPM6 2d1	I2	800°C	Si	pH= 1	sol-gel			
BPM6 2d2	I3	600°C	BS	pH=2	sol-gel			
BPM6 2d2	I4	800°C	Si	pH=2	sol-gel			

Table 9. Thin films from BPM6 (sol-gel)

Table 10. Thin films from BPM6 (PLD)

Code	Series	Substrate	Obs.	Average* thickness (d) (µm)	d min* (µm)	d máx* (µm)
		Si	25k			
BPM6_50f	III1	BS	vid	3.7769	0.9339	4.7242
		Si	25k			
BPM6_400f	III2	BS	vid	3.3423	1.1806	5.5665
		Si	25k			
BPM6_600f	III3	BS	vid	1.8257	0.6401	4.5336
		Si	25k			
BPM6_602f	III4	BS	Ar	3.3468	0.8807	4.6372

Table 11. BPMG2d sol-gel powder samples

Code	Observation
	dried at 150oC for 2 hours, containing P2O5-B2O3 plus Dy2O3 and Tb2O3 (68,
Sample 1	17, 7.5 and 7.5 molar% respectively), gelified at pH 2;
	dried at 150oC for 2 hours, containing P2O5-B2O3 plus Dy2O3 and Tb2O3 (68,
Sample 2	17, 7.5 and 7.5 molar% respectively), gelified at pH 1 (HCl added);
	dried at 150oC for 2 hours, containing P2O5-B2O3 plus Dy2O3 and Tb2O3 (68,
Sample 3	17, 7.5 and 7.5 molar% respectively), gelified at pH 3 (NH4OH added);
	dried at 150oC for 2 hours, containing P2O5-B2O3 plus Dy2O3 and Tb2O3 (68,
Sample 4	17, 7.5 and 7.5 molar% respectively), gelified at pH 2.5 (less NH4OH added);

Structural characterization of sol-gel powders by XRD

Sol-gel powders were not amorphous. XRD patterns for all samples look very similar as the peaks seem to appear at the same positions (2 theta value), and only some small variation in the peak intensities (as arbitrary units). Most likely the peaks can be identified as : Hydrogen phosphate (H_3PO_4) ; Phosphorous (P); Boric oxide B(OH)₃ and Boron phosphide (B12 P2)

III. Design and manufacturing of prototype for Faraday rotator using vitreous dopped boro-phosphatic materials - SITEX

Fig. 19. Operation principle of Faraday isolator

Fig. 20. External dimensions of optical glass rods –rectangular version Table 12. External dimensions of optical glass rods –cylindrical version

Reper	Ext diameter mm	Length mm
Cylindrical rod of optical glass	5	25
1		
Semi-finished		
Cylindrical rod of optical glass	6	25
2		
Semifinished		

Fig. 21. Optimal dimensions of cylindrical magnet for an optical isolator with radial opening of 12mm with rings of magnetic field a) radial and axial. B) Imagnetization rings, axial and sidelong All dimesnions are in mm

Table 13. Magnetic characteristics of cylindrical magnets of Neodymium Iron Boron

Neodymium Iron Boron / Magnetic Properties								
Press ¹	Br (Gauss)	Hc (Oersteds)	Hci (Oersteds)	BHmax (MGOe)	Temperature Coefficients (%/°C)		Maximum Operating Temp @ Pc=2 ⁽²⁾	
	Range	Typical	Minimum	Range	of BR	of Hci	(°C)	(°F)
D	14,200 ~ 14,700	10,300	11,000	48 ~ 53	-0.11	-0.65	~ 80	~ 170
	13,900 ~ 14,400	13,100	14,000	46 ~ 51	-0.11	-0.61	~ 130	~ 260
D	13,900 ~ 14,400	10,300	11,000	46 ~ 51	-0.11	-0.61	~ 110	~ 230
D	13,500 ~ 14,100	12,700	16,000	44 ~ 49	-0.11	-0.61	~ 140	~ 280
D	13,600 ~ 14,100	12,800	14,000	45 ~ 49	-0.11	-0.61	~ 130	~ 260
	Press ¹ D I D D D	Neo Br (Gauss) Br 2000 Range 2000 D 14,200 ~ 14,700 14,200 I 13,900 ~ 14,400 2000 D 13,500 ~ 14,400 2000 D 13,500 ~ 14,100 2000 D 13,500 ~ 14,100 2000	Neodymium Iron Br (Gauss) Hc (Oersteds) Range Typical D 14,200 ~ 14,700 10,300 I 13,900 ~ 14,400 13,100 D 13,900 ~ 14,400 10,300 D 13,500 ~ 14,400 10,300 D 13,500 ~ 14,400 12,700 D 13,600 ~ 14,100 12,800	Neodymium Iron Boron / Ma Br (Gauss) Hc (Oersteds) Hc (Oersteds) Range Typical Minimum D 14,200 ~ 14,700 10,300 11,000 I 13,900 ~ 14,400 13,100 14,000 D 13,900 ~ 14,400 10,300 11,000 D 13,500 ~ 14,400 10,300 11,000 D 13,500 ~ 14,400 12,700 16,000 D 13,600 ~ 14,100 12,800 14,000	Neodymium Iron Boron / Magnetic Press Br (Gauss) Hc (Oersteds) Hc (Oersteds) Hc (Oersteds) BHmax (MGOe) Range Typical Minimum Range D 14,200 ~ 14,700 10,300 11,000 48 ~ 53 I 13,900 ~ 14,400 13,100 14,000 46 ~ 51 D 13,500 ~ 14,100 12,700 16,000 44 ~ 49 D 13,600 ~ 14,100 12,800 14,000 45 ~ 49	Neodymium Iron Boron / Magnetic Properties Press1 Br (Gauss) Hc (Oersteds) Hci (Oersteds) BHmax (Oersteds) Temper (MGOO) D Range Typical Minimum Range of BR D 14,200 ~ 14,700 10,300 11,000 48 ~ 53 -0.11 I 13,900 ~ 14,400 10,300 11,000 46 ~ 51 -0.11 D 13,500 ~ 14,400 10,300 11,000 46 ~ 51 -0.11 D 13,500 ~ 14,100 12,700 16,000 44 ~ 49 -0.11 D 13,600 ~ 14,100 12,800 14,000 45 ~ 49 -0.11	Neodymium Iron Boron / Magnetic Properties Press1 Br (Gauss) Hc (Oersteds) Hci (Oersteds) BHmax (MGOe) Tempettre Coefficient/ (MGOe) Press1 Range Typical Minimum Range of BR of Hci (MGOe) of BR of Hci (MGOe) of BR of Hci (MGOe) of BR of Hci D 14,200 ~ 14,700 10,300 11,000 48 ~ 53 -0.11 -0.651 I 13,900 ~ 14,400 13,100 14,000 46 ~ 51 -0.11 -0.611 D 13,500 ~ 14,400 10,300 11,000 46 ~ 51 -0.11 -0.611 D 13,500 ~ 14,100 12,700 16,000 44 ~ 49 -0.11 -0.611 D 13,600 ~ 14,100 12,800 14,000 45 ~ 49 -0.11 -0.611	Neodymium Iron Boron / Magnetic Properties Press1 Br (Gauss) Hc (Oersteds) Hc (Oersteds) BHmax (Oersteds) Temperty (MGOe) Temperty Coefficients Maximum Temperty D Range Typical Minimum Range of BR of Hci (°C) D 14,200 ~ 14,700 10,300 11,000 48 ~ 53 -0.11 -0.65 ~ 80 I 13,900 ~ 14,400 13,100 14,000 46 ~ 51 -0.11 -0.61 ~ 130 D 13,900 ~ 14,400 10,300 11,000 46 ~ 51 -0.11 -0.61 ~ 110 D 13,500 ~ 14,100 12,700 16,000 44 ~ 49 -0.11 -0.61 ~ 140 D 13,600 ~ 14,100 12,800 14,000 45 ~ 49 -0.11 -0.61 ~ 130

Table 14. The selection range characteristics for magnetical cylinders

OD mm	15	15	20	20	25	25	25	30	30
ID mm	5	6	5	8	5	8	10	8	10
Lungime mm	20	30	30	50	30	40	50	50	60
Cantitate(buc) magnetizare longitudinala	1	1	1	1	1	1	1	1	1
Valoare energie maxima (BH) MGO	35	35	40	40	42	42	42	45	45

Fig. 22. Images of Faraday isolator a) Design version SOLIDWORKS as OEM Isolator Faraday integrated system c) Design versione AUTOCAD as OEM Isolator Faraday SITEX concept with wave tunning

Table 15. Main technie	cal characteristics	for Faraday rotator
------------------------	---------------------	---------------------

Valoarea centrala a lungimii de unda	633 nm
Domeniul de funcționare	603 - 663 nm
Transmitanța	71 - 75%
Izolație	35 - 40 dB
Diagrama performantelor	Diagramele de jos ștanga dreapta
Diametrul maxim fascicul	1.8 mm
Puterea maxima admisa	0.3 W
Densitatea maxima de putere	Nivel de blocare 25 W/cm ² Transmitanța 100 W/cm ²

Fig. 23. Main technical features of Faraday rotator for 633 nm, wavelength depending of polarization.

Table 16. Technical characteristics Beamsplitters Edmund Optics USA

Dimensional Tolerance (mm)	±0.1
Clear Aperture (%)	90
Surface Flatness	λ/4
Surface Quality	40-20
Beam Deviation (arcmin)	±2
Bevel	Protective bevel as needed
Design Wavelength DWL (nm)	632.8
Extinction Ratio	$T_p/T_s > 1000:1 @ 632.8 nm$
Substrate	N-BK7
P-Polarization Transmission (%)	>95
S-Polarization Reflection (%)	>99.5
Coating Specification	$R_{abs} < 0.25\%$ @ 632.8 nm
Construction	Cube
Туре	Linear Polarizer
RoHS	Compliant

Table 17. Technical sheet for Laser source TOPAG Germany

107AS Lasetachtik GmbH Mindan-Ramtikidar Straße 247 D-84285 Dermetadt Fon +43-8191-425572, Fax-88 E-Mail Infostopag de Internet www.topag.de	TOPG		
	1	Laser Diode Module LDH – Series - Red	
PRODUCT FEATURES	SPECIFICATIONS		
A High Stability and low point	Wavelength	625 nm - 690 nm	
Reverse Polarity Protection	Optical Output Power	7 - 100 mW Depending on wavelength	
	Power Stability	< 1%	
APPLICATIONS	Laser RMS Nolse	< 0.5%	
A Measurement	Wavelength Drift	0.2 nm/*C	
Bioanalytical	Beam Size (1/e2)	Adjustable or Collimated (Smm)	
Automation	Divergence at Collimation	< 0.5 mrad	
Alignment	Laser Structure	Single Mode Laser	
	Pointing Stability	< ± 25 µrad	
	Laser Operation	CW	
	ELECTRICAL		
	Operating Voltage	3.3 to 5 VDC	
	Operating Current	< 110 mA	
	Control Circuit	Auto Power Control	
	Electrical Connections	+Red, -Slack	
countlined excerd-semiconductor Learn piece semiging: this later module emits replation that is whible and hermful to human evaluation in use	MECHANICAL		
do not look directly into the later emitting aperture, pirect viewing of later diode emission	Dimensions	12 mm (D) x 51 mm (L)	
at close range may cause eye demage.	Cable	200 mm	
Limited warranty one year. No warranty	Operating Temperature	-10*C to + 50*C *	
damage due to abute or misepplication.	Storage Temperature	-40*C to + 80*C	
partiag: the case is inter- rally connected to the drawly demapling to the endoded surface may reaction failure of the least metric.	Heat Sink Requirements + themel wanagement Low earlies can through its body. For proper cooling, do device, an additional heat ank should be the time of the lease statem.	Recommended for extended use reptamis designed to displays heat not restrict air circulation around the suited to maximize the performance and	

Tabel 18. Measurement workshop with suppliying unit for DC Low voltage

Compound	Quantity
Source, 0-12VDC 13670.93	1
Diode Laser, He-Ne 3.0 mw, 5VDC	1
08181.93	
Polarizor 08610.00	2
Support l = 60 cm 08283.00	1
Positioner h-30 mm 08286.01	1

Photoelement 08734.00	1
Faraday rotator	1
Amplifier 13626.93	1
Digital Multimetter 07134.00	2
Cable BNC, L=750 mm 07542.11	1
Adapter, conector-BNC/4 mm 07542.27 1	1
Cable, 750 mm, blue 07362.04	2
Cable, 750 mm, red 07362.04	2
Generator 1MHz for electro-optical	1
modulator 13650.93 /Potentiometter	
Acoustic module, 8 Ohm/5 kOhm 13765.00	1

Fig. 24. Measurement workshop with suppliying unit for AC high voltage

Fig. 25. Technical drawings for Faraday isolator Model 1

Fig. 26. Technical drawings for Faraday isolator Model 2

Dissemination

ISI Published articles

1. C. Nico, R. Fernandes, M. P. F. Graça, M. Elisa, B. A. Sava, R. C. C. Monteiro, L. Rino, T. Monteiro, "Eu³⁺ luminescence în aluminophosphate glasses", J. Lumin., 145, pp. 582- 587, 2014 2. R. S. Soares, R.C.C. Monteiro, M.R.A. Lima, B.A Sava, M. Elisa, "Phase transformation and microstructural evolution after heat treatment of a terbium-doped aluminium phosphate glass", J. Mater. Sci., 49 (13), pp. 4601-4611, 2014

3. C. R. Iordanescu, I. D. Feraru, M. Elisa, I. C. Vasiliu, A. Volceanov, S. Stoleriu, M. Filipescu, "Structural and morphological studies of Nd-doped phosphate thin films deposited by PLD on silicon wafers", J. Optoelectron. Adv. Mater., vol. 16 (3-4), 2014, p. 288 – 294

4. Roque S. Soares, Regina C. C. Monteiro, Andreia A. S. Lopes, Maria M. R. A. Lima, Bogdan A. Sava, Mihail Elisa, "Crystallization and microstructure of Eu³⁺-doped lithium aluminophosphate glass", J. Non-Cryst. Solids, 403, pp. 9–17, 2014

5. Bogdan Sava, Mihai Elisa, Cristina Bartha, Raluca Iordanescu, Ionut Feraru, Carmen Plapcianu, Roxana Patrascu, "<u>Non-isothermal free-models kinetic analysis on crystallization of europium-</u>doped phosphate glasses", Ceramics International, 40, 8A, 2014, pp 12387-12395

6.M. Sofronie, M. Elisa, **B. A. Sava**, **L. Boroica**, M. Valeanu, V. Kuncser, "Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator", Review of Scientific Instruments 86, 053905 (2015); DOI: 10.1063/1.4920920

7. B. A. Sava, C. Tardei, C. M. Simonescu, L. Boroica, A. Melinescu, "Hydroxyapatite nanopowders obtained by sol-gel method, synthesis and properties", Optoelectronic and Advanced Materials-Rapid Communications, Vol. 9, No. 11-12, Nov. – Dec. 2015, p. 1415 – 1424

8.Olga Shikimaka, Daria Grabco, **Bogdan Alexandru Sava**^{*}, Mihail Elisa, **Lucica Boroica**, Evghenii Harea, Constantin Pyrtsac, Andrian Prisacaru, Zinaida Barbos, "Densification contribution as a function of strain rate under indentation of terbium-doped aluminophosphate glass", Journal of Materials Science, DOI 10.1007/s10853-015-9460-8, 2015, 51(3), 1409-1417 (2016). Springer

9. Valeanu, Mihaela; Sofronie, Mihaela; Galca, Aurelian Catalin; Tolea, Felicia; Elisa, Mihai; Sava, Bogdan; Boroica, Lucica; Kuncser, Victor; "Relationship between magnetism and magneto-optical effects in Rare Earth doped aluminophosphate glasses", Journal of Physics D: Applied Physics, 49 (2016) 075001

10. Christu Tardei, C.M. Simonescu, Cristian Onose, B.A Sava, L. Boroica, B.G. Sbârcea, "Evaluation of lab scale nano-hydroxyapatites for lead ions removal from aqueous solutions", Romanian Journal of Materials, 46 (3) (2016) 289-295

11. B. A. Sava, M. Elisa, L. Boroica, V. Kuncser, M. Valeanu, I. C. Vasiliu, I. Feraru, R. Iordanescu, "Sol-gel preparation and structural investigations of silico-phosphate glasses doped with Fe ions", Journal of Sol-Gel Science and Technology, DOI 10.1007/s10971-016-4192-z, 2016 12. Mihail Elisa, Raluca Iordanescu Cristina Vasiliu, Bogdan Alexandru Sava, Lucica Boroica, Mihaela Valeanu, Victor Kuncser, Adrian Volceanov, Mihai Eftimie, Alina Melinescu, Anca Beldiceanu, "Magnetic and magneto-optical properties of Bi and Pb-doped aluminophosphate glass", J. Non-Cryst. Solids (2016) approved for publishing

Patent Request SITEX OSIM no 02655/a/j1st june,2015 Patent Request INFLPR OSIM under submission

Papers presented :

1. B. A. Sava, O. Shikimaka, D. Grabco, M. Elisa, L. Boroica, E. Harea, C. Pyrtsac, "Thermally induced indentation recovery în terbium dopped aluminophosphate glasses", The 3rd International Conference on Competitive Materials and Technology Processes, IC-CMTP3, Miskolc Lillafured, Hungary, 2014, Book of Abstracts, Session 5, Glasses, Coatings and Related Materials, p. 96, ISBN 978-963-12-0334-9

2. B. A. Sava, M. Elisa, Lucica Boroica, Olga Shikimaka, Daria Grabco, V. Kuncser, and R. Medianu, "Rare earth doped phosphate glasses for magneto-optical devices", The 3rd International Conference on Competitive Materials and Technology Processes, IC-CMTP3, Miskolc Lillafured, Hungary, 2014, Book of Abstracts, Session 5, Glasses, Coatings and Related Materials, p. 97, ISBN 978-963-12-0334-9

3. B. A. Sava, "Phosphate and borate-phosphate glasses. Obtaining, properties and some applications", The Sixth Balkan Conference on Glass Science & Technology, The 18th Conference on glass and ceramics, 01. – 04.10.2014, Nessebar, Bulgaria, Abstract Book, p 22-23, Invited paper.

4. L. Boroica, B. A. Sava, M. Elisa, V. Kuncser, R. Iordanescu, I. Feraru, M. Eftimie, "Structure and properties of doped-borophosphate glasses for magneto-optical devices" Sixth Balkan Conference on Glass Science & Technology, 18th Conference on Glass and Ceramics, Nessebar, Bulgaria, 2014, Abstract Book, pp. 25-26.

5. Sava B., Iordanescu R., Feraru I., Elisa M., Vasiliu I., Boroica L., Bartha C., Plapcianu C., Palade. P., Valeanu M., Kuncser V., Volceanov A., Stoleriu S., "Optical, thermal and structural properties of iron-doped phosphate glasses', 12th European Society of Glass Technology-ESG 2014, Parma, Italy, Book of Abstracts, Special Glass Poster Session -13 SGP, pag.205.

6. Eftimie M., Volceanov A., Dima V., Elisa M., "Physical and morphological characterization of some phosphate-based glasses for magneto-optical application", 12th European Society of Glass Technology-ESG 2014, Parma, Italy, Book of Abstracts, Special Glass Poster Session -03 PMP, p.192.

7. L. Boroica, B. A. Sava, M. Elisa, M. Valeanu, V. Kuncser, M. Sofronie, O. Shikimaka, D. Grabco, "Magneto-optical and mechanical properties of rare-earth doped phosphate glasses", 7th International Conference on Materials Science and Condensed Matter Physics-MSCMP 2014, Vadu lui Voda, , Rep. of Moldova, 2014, Abstract Book, p. 88.

8. O. Shikimaka, D. Grabco, B. A. Sava, M. Elisa, L. Boroica, E. Harea, C. Pyrtsac, A. Prisacaru, D. Spoiala, "Micro- and macro-mechanical properties of aluminophosphate glasses depending on their compozition and loading conditions", 7th International Conference on Materials |Science and Condensed Matter Physics-MSCMP 2014, Vadu lui Voda, Rep. of Moldova, 2014, Abstract Book, p. 131.

9. B. A. Sava, L. Boroica, M. Elisa, G. Socol, A. Andrei, A. M. Niculescu, O. Shikimaka, D. Grabco, "Doped boro-phosphate vitreous materials as PLD thin films, obtaining and properties", 7th International Conference on Materials Science and Condensed Matter Physics-MSCMP 2014, Vadu lui Voda, Rep. of Moldova, 2014, Abstract Book, p. 135.

10. Iordanescu R., Feraru I., Elisa M., Sava B., Boroica L., Valeanu M., Kuncser V., Sofronie M, "Magnetic and magneto-optical properties of La, Y and Eu-doped phosphate glasses", The 8th International Conference on Borate Glasses, Crystals and Melts "Borate Phosphate 2014", Pardubice, Czech Republic, Published by ICARIS Ltd., p. 206.

11. Sava B. A., Boroica L., Elisa M., Medianu R. V., Monteiro R. C. C., "Boro-phosphate glasses doped with d and f oxides for photonics, preparation and characterization", The 8th International Conference on Borate Glasses, Crystals and Melts "Borate Phosphate 2014", Pardubice, Czech Republic, Published by ICARIS Ltd., p. 219.

12. Sava B. A., Boroica Lucica, Elisa M., Medianu R. V., Grabco Daria, Shikimaka Olga, "Borophosphate glasses for optoelectronics and photonics", International Conference "Modern Laser Applications - INDLAS 2014, Bran, Romania.

13. D.Ulieru, "The applications of Organic and Flexible Electronics innovative MOEMS (Microopto-electromechanical microsystems) development for SITEX's bio- medical approaches", The 10th Annual General Assembly and 33rd Working Group Meeting, Beerse-Brussels, Belgium, 29/30 Oct 2014

14. D.Ulieru, A.Tantau, X.Vila, "Innovative cooling solutions for power optoelectronics devices", International Semiconductors Conference, CAS 2014,13/15 sept, Sinaia, Romania.

15. Andreia Lopes, M. M. R. A. Lima, J. P. Veiga, B. Sava, L. Boroica, M Elisa, D. Ulieru, R. C. C. Monteiro, "Thermal characteristics of co-doped borophosphate glass", Materials 2015 International Conference, 21-23.06.2015, Porto, Portugal.

16. B. A. Sava, C. Tardei, C.A. Simonescu, A. Cucos, L. Boroica, "Hydroxyapatite nanopowders obtained by sol-gel method. synthesis and properties", The 8th International Conference on Advanced Materials, ROCAM 2015, 7-10 July 2015, Bucharest, Romania.

17. Boroica L., Sava B. A., Medianu V.R., Elisa M., Filipescu M., Monteiro R., Iordanescu R., Feraru I., Shikimaka O., Grabco D., "Thin films obtained by magnetron sputtering from borophosphate glasses doped with Dy and Tb", ROMOPTO 2015, 1-4 sept. 2015, Bucharest, Romania.

18. Sava B. A., Boroica L., Elisa M., O. Shikimaka, D. Grabco, G. Socol, Regina C C Monteiro, V. Kuncser, R. Iordanescu, I. Feraru, R. Medianu, "Obtaining and characterization of doped boroposphate nanomaterials for photonics", ROMOPTO 2015, 1-4 sept. 2015, Bucharest, Romania.

19. B.A. Sava, L. Boroica, M. Elisa, R.C.C. Monteiro, O. Shikimaka, D. Grabco, R. Iordanescu, I. Feraru, "Sol- gel obtaining of powders and thin films from doped boro-phosphate systems", Conferinta Internationala "Sol-Gel 2015", Kyoto, Japonia, 6.09.2015-11.09.2015.

20. Sava B. A., Boroica L., Elisa M., Socol G., Stefan N., Andrei A., Filipescu M., Monteiro R., Iordanescu R., Feraru I., Shikimaka O., Grabco D., "PLD Thin Films Obtained From Dy_2O_3 And Tb_2O_3 Co-doped Boro-Phosphate Glasses", Conferinta Internationala "International Comission on Glass $\ 2015$ ", 20.09.-23.09.2015, Bangkok Tailanda Abstract Book, p. 208.

21. B. A. Sava, M. Elisa, L. Boroica, R. Medianu, R. C. C. Monteiro, V. Kuncser, M. Valeanu, R. Iordanescu, I. D. Feraru, "Bismuth and lead oxide co-doped borophosphate thin films obtained by RF magnetron sputtering, for magneto-optical applications", 23rd International Conference on Materials and Technology, 27–30.09.2015, Bernardin, Portoroz, Slovenija.

22. D. Grabco, O. Shikimaka, M. Elisa, B. Sava, L. Boroica, E. Harea, C. Pyrtsac, A. Prisacaru, I. Feraru, R. Iordanescu, Z. Barbos, Ia. Vreme, "Effect of spin coating technique on mechanical properties of silicophosphate thin films doped by neodymium "3rd International Conference on Nanotechologies and Biomedical Engineerings, Chisinau, 23-25 sept. 2015, Moldova, Abstract Book, p. 71.

23. Ulieru Dumitru, "Prototypes presentation", SEMICON Europe, 6-10.10.2015, Dresda, Germania (organizatori SEMI-Org.USA si Dresden Messe Germania).

24. D.Ulieru, Oana Maria Ulieru, Xavi Vila, A.Topor, "The Modern Concept Of Microsensors/ Microsystems Integration At Wafer Level By High Accuracy Micromanufacturing Processes", Proceeding 160/164 pp, Conference 4M/IWMF 2015, 30 March/2 Aprile 2015, Politecnico di Milano, Italy.

25. D.Ulieru, A Topor, "Excimer Laser Ablation-A Novel Patterning Technology in Semiconductor Packaging Applications", Laser World of Photonics Conference & Fair, June 22-25, 2015, Munich Trade Fair Center, Munich, Germany.

26. Regina C.C. Monteiro, A.A.S. Lopes, Bogdan A. Sava, Lucica Boroica, Mihail Elisa, "Crystallization behavior of a co-doped borophosphate glass studied by DSC, XRD and SEM", 25th Symposium on thermal Analysis and Calorimetry – Eugen Segal, 15th April 2016, Bucharest, Romania, Book of abstracts, SITECH Publishing House, p. 84, ISBN 978-606-11-5369-5.

27. M.Elisa, I. C. Vasiliu, R. Iordanescu, B.A. Sava, L. Boroica, M. Valeanu, V. Kuncser, "Structural, magnetic and magneto-optical properties of lead and iron -doped silico-phosphate solgel films", 12th International Conference on Colloid and Surface Chemistry, may 16-18, Iasi, Romania, Book of abstracts, p. 63.

28. B.A. Sava, L. Boroica, M. Elisa, R.C.C. Monteiro, O. Shikimaka, D. Grabco, I. Belei, R. Iordanescu, S. Brajnicov, V. Kuncher, "Spin coating depositions from sol-gel rare-earth doped boron-phosphate systems", Society of Glass Technology Centenary Conference & European Society of Glass Science and Technology 2016 Conference, Glass – Back to the Future!, Sheffield, UK, 4–8 September 2016, Abstract Book, p. 401-402.

29. C. R. Iordanescu, M. Elisa, I. C. Vasiliu, B. A. Sava, L. Boroica, M. Valeanu, V. Kuncser, A. Beldiceanu, A. Volceanov, M. Eftimie, "Structural, morphological and magnetic properties of Ce3+ and Tb3+- doped silico-phosphate sol-gel thin films", Society of Glass Technology Centenary Conference & European Society of Glass Science and Technology 2016 Conference, Glass – Back to the Future!, Sheffield, UK, 4–8 September 2016, Abstract Book, p. 399-400.

30. B.A. Sava, L. Boroica, M. Elisa, R.C.C. Monteiro, O. Shikimaka, D. Grabco, R. Iordanescu, V. Kuncser, "Boron-phosphate sol-gel thin films doped with Dysprosium and Therbium ions", 8-th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), Chisinau, Republica Moldova, 12-16.09.2016, Abstract Book, ISBN 978-9975-71-819-6, p. 119.

31. L. Boroica, B. A. Sava, O. Shikimaka, D. Grabco, M. Elisa, R. Iordanescu, R. C. C. Monteiro, R. V. Medianu, "Magnetron sputtering multistrate thin layers deposition from doped boron-phosphate systems", 8-th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), Chisinau, Republica Moldova, 12-16.09.2016, Abstract Book, ISBN 978-9975-71-819-6, p. 123.

32. M. Popa, O. Shikimaka, D. Grabco, B.A. Sava, L. Boroica, M. Elisa, C. Pyrtsac, Z. Barbos, I. Belei, "Fracture toughness and hardness at micro- and nanoindentation of phosphate glasses depending on their composition", 8-th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), Chisinau, Republica Moldova, 12-16.09.2016, Abstract Book, ISBN 978-9975-71-819-6, p. 175.

33. I. Belei, O. Shikimaka, D. Grabco, B.A. Sava, L. Boroica, M. Elisa, C. Pyrtsac, A. Prisacaru, M. Popa, "Prolonged holding and cyclic loading indentation of aluminophosphate glass: kinetics of deformation", 8-th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), Chisinau, Republica Moldova, 12-16.09.2016, Abstract Book, ISBN 978-9975-71-819-6, p.181.

34. B.A. Sava, L. Boroica, M. Elisa, R.C.C. Monteiro, O. Shikimaka, V. Kuncser, I. Feraru, R. Iordanescu, Z. Barbos, M. Popa, M. Filipescu, G. Socol, "Doped boro-phosphate glasses as bulk, powders and thin layers – obtaining, structure and properties", XII-nd Conference on the science and engineering of oxide materials – "CONSILOX 2016", Sinaia, Romania, 16-20 septembrie 2016, Abstract Book, ISSN 2285-6145, p. 60-61.

35. Christu Tardei, C.M. Simonescu, Cristian Onose, B.A Sava, L. Boroica, D. Talpeanu, B.G. Sbârcea, "Evaluation of lab scale nano-hydroxyapatites for lead ions removal from aqueous solutions", XII-nd Conference on the science and engineering of oxide materials – "CONSILOX 2016", Sinaia, Romania, 16-20 septembrie 2016, Abstract Book, ISSN 2285-6145, p. 87-88.

36. Raluca Iordanescu, Mihail Elisa, Cristina Vasiliu, Bogdan Alexandru Sava, Lucica Boroica, Mihaela Valeanu, Victor Kuncser, Adrian Volceanov, Mihaiela Eftimie, Alina Melinescu, Anca Beldiceanu, "Magnetic and magneto-optical properties of Bi and Pb-doped aluminophosphate glass", XII-nd Conference on the science and engineering of oxide materials – "CONSILOX 2016", Sinaia, Romania, 16-20 septembrie 2016, Abstract Book, ISSN 2285-6145, p.107-108.

37. Elisa M., Iordanescu R., Vasiliu C., Sava B., Boroica L., Valeanu M., Kuncser V., "Structural, magnetic and magneto-optical properties of pr-doped silico-phosphate sol-gel films", XXth Mendeleev Congress on General and Applied Chemistry, Ekaterinburg, Russia, 2016, Program, Section 2-Chemistry and Materials technology and Nanomaterials, P2.2, pag. 143.

38. D. Ulieru, Oana Maria Ulieru, A.Topor, Xavi Vila, "A thinner technology from thick to thin films microprocessing of microelectronics hybrids circuitry by laser precision trimming", 4M/IWMF Conference 2016, Research Publishing, Singapore, Proceeding pp 195/198, 13/15 Sep, 2016, DTU (Danish Technical University, Lyngby, Copenhagen, Denmark.

39. D. Ulieru, "Gaining Strategic Advantage in RFID Antenna Manufacturing", Internet of Things Conference 2016, Internet of Things IOT+ Planet Conference 2016, 24/27 oct. 2016, parallel event of SEMICON 2016,13/15 september 2016, Conference & Expo ALPEXPO, Grenoble, Franta.

Project web page

On <u>www.inflpr.ro</u> with link: <u>http://www.inflpr.ro/ro/node/1165</u>